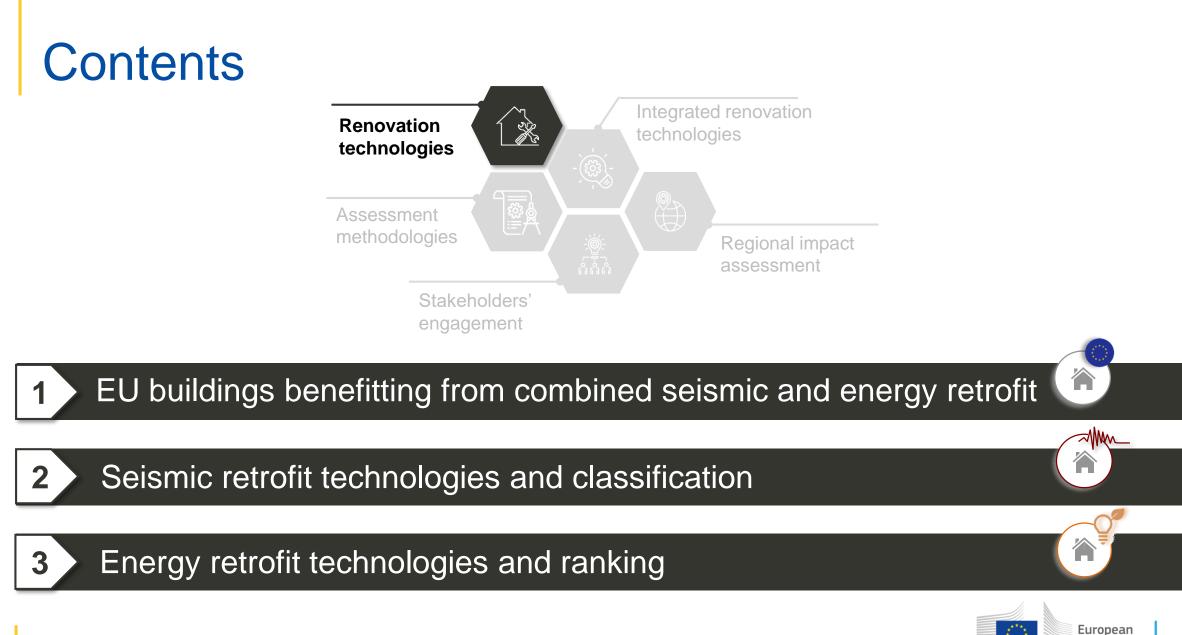


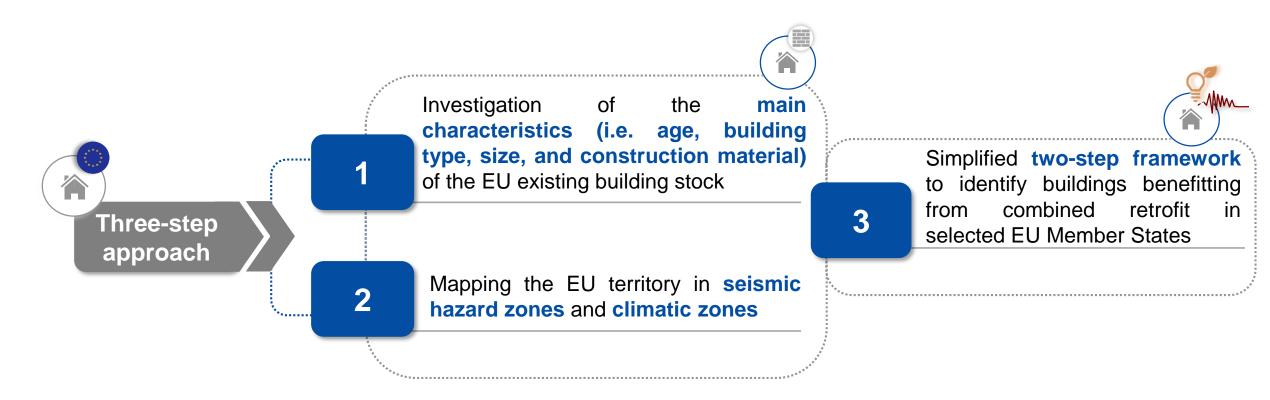
Technologies for separate seismic and energy renovation of buildings

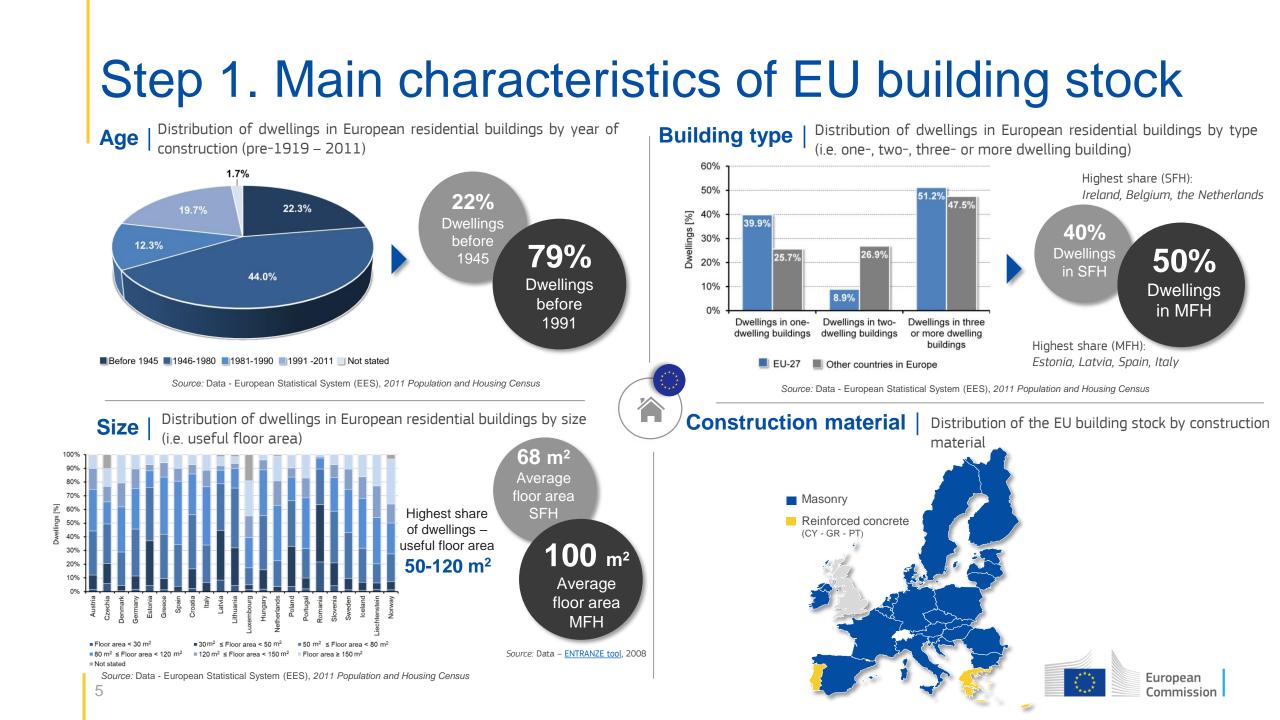

REEBUILD - Integrated techniques for seismic strengthening and energy efficiency of existing buildings

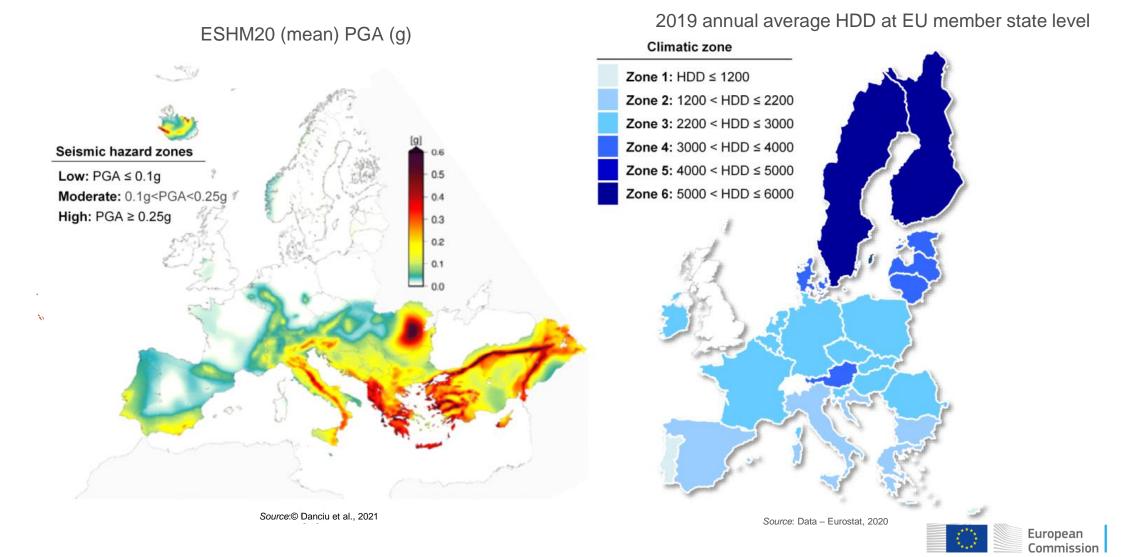
Elvira Romano, Paolo Negro

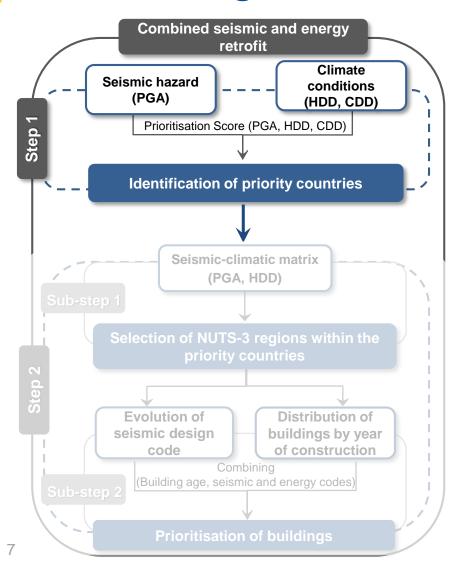
<u>Experts</u>: Alessandra Marini, Andrea Belleri, Ivan Jankovic, Oliver Rapf, Giuseppe Santarsiero, Angelo Masi, Christoph Butenweg

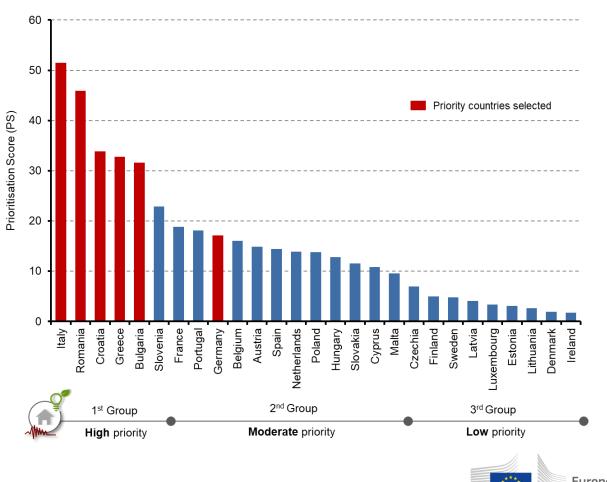
Final workshop, 21 March 2024


Joint Research Centre

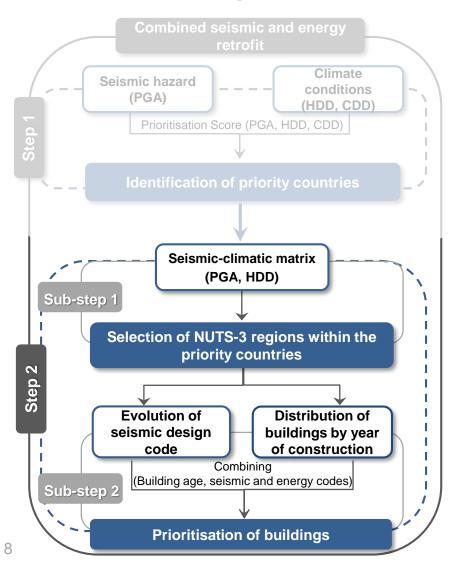

Commission

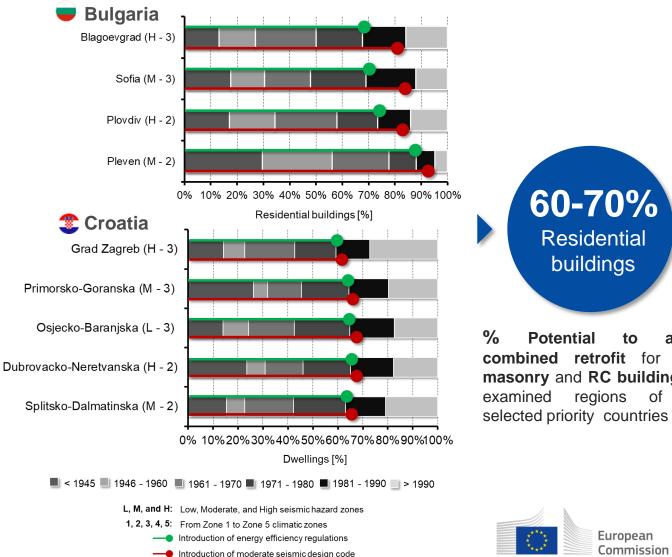

Three-step approach investigation





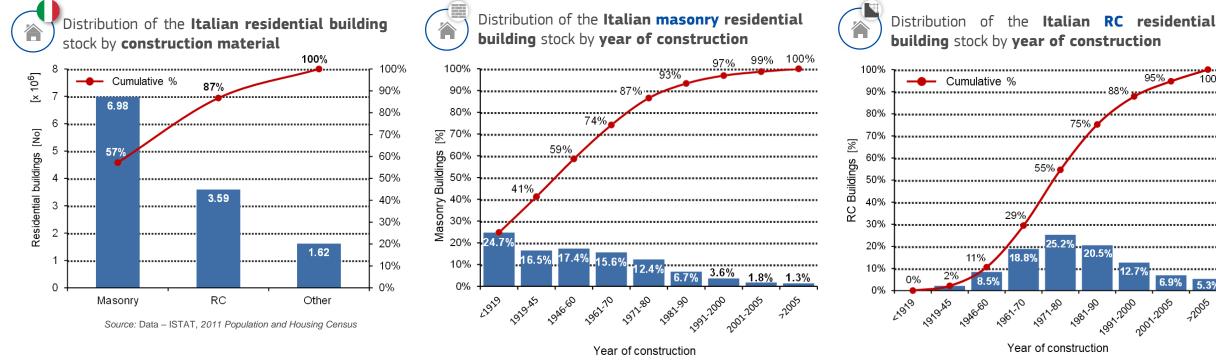
Step 2. Mapping EU in seismic and climatic zones


Step 3. Two-step framework: EU buildings benefitting from combined retrofit



European Commission

Step 3. Two-step framework: EU buildings benefitting from combined retrofit



60-70% **Residential** buildings

to apply combined retrofit for both masonry and RC buildings in regions of the selected priority countries

Focus on Italian building typologies needing combined retrofit

Analysis of statistics on Italian masonry and RC building stock

Source: Data – ISTAT, 2011 Population and Housing Census

Source: Data – ISTAT, 2011 Population and Housing Census

90% of Italian **masonry** residential buildings **55%** of Italian **RC** residential buildings

88% of Italian masonry and RC residential buildings

Built with no seismic provisions

Do not comply with modern energy requirements

Focus on Italian building typologies needing combined retrofit

— Masonry buildings —

Identification of the selected Italian masonry building typologies vulnerable to earthquake in Emilia region (potentially applicable also to North-East Italy)

Masonry building typologies						
Main char	Main characteristics4D-5D6D					
	Vertical structural components	Walls with regular layout and good quality of masonry	Walls with regular layout and good quality of masonry			
	Tie rods/tie beams	Missing	Missing			
Structural Typology	Horizontal structural components	 4D: Flexible (e.g. timber planks, beams and shallow arch vaults, etc.) 5D: Semirigid (e.g. beams and flat hollow clay bricks, etc.) 	Rigid (e.g. RC slab)			
	Roof	Thrusting	Thrusting			
Building size	Number of stories Total floor area [m ²]	2 or 3 300÷400	2 or 3 400÷450			
Building age	Period of construction	<1945	<1971			

Source: Data – Da.O.D, 2012 Emilia database (AeDES form) – Data retrieved from survey forms for post-earthquake damage and safety assessment of buildings (with reference to 2012 Emilia earthquake) (Baggio et al., 2007; Dolce et al., 2019)

Thermal transmittance (U-value) of the envelope components of the selected building type in the 'as is' scenario and threshold values required by the Italian Ministerial Decree on energy efficiency of buildings (DM 26/06/2015)

			U-value [W/m²K]		
Building envelope component		Building type ⁽¹⁾ (IT.MidClim.MFH.02.Gen)	Threshold values for existing buildings under renovation ⁽²⁾		
Opaque vertical components	Wall (60cm-thick)	1.19	0.28		
Horizontal	Roof	1.54	0.24		
components	Floor	1.20	0.29		
Transparent vertical components	Window	4.90	1.40		

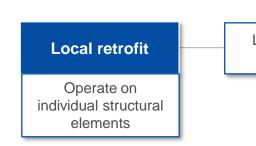
(1) Data retrieved from TABULA WebTool.

(²) Threshold U-values (climatic zone E) in force from 1st January 2021 for existing building subjected to energy renovation (Annex B of DM 26/06/2015).

Seismic retrofit technologies

Global retrofit

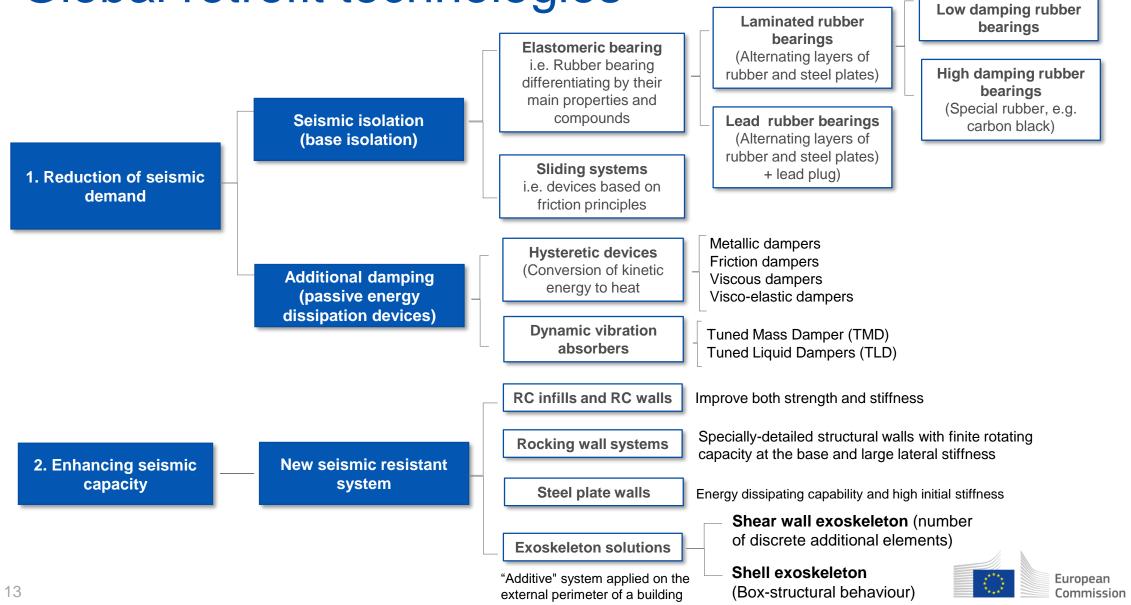
Involve the building as a whole


Seismic Retrofit Technologies (SRTs)

1. Reduction of seismic demand

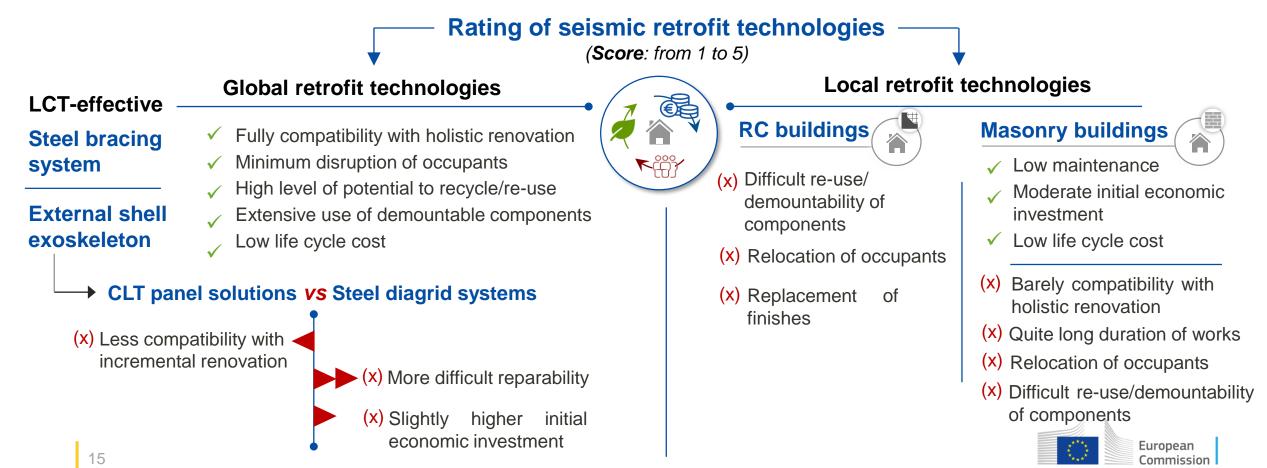
Seismic isolation Additional damping

2. Enhancing seismic capacity

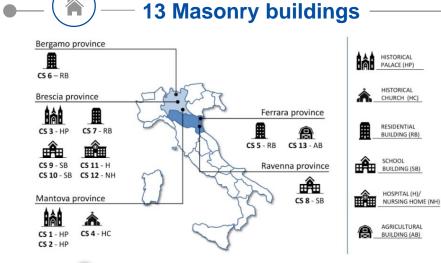

RC walls - Steel braces - Rocking wall systems – Shear wall exoskeletons, Shell exoskeletons (e.g. diagrid system, cross-laminated timber (CLT) panels)

Local strengthening measures by building typology (Focus on RC, masonry buildings)

Global retrofit technologies



Loc	al retrofit teo	chnologies		
•		•	• Masonry bui	ildings (A)
R	C Beam and column	Beam-to-column joints	Masonry wa	II
	Enhance their strength, ductility, and se	ismic capacity	Enhance in-plane and out	-of-plane behaviour
RC jacketing Steel jacketing	Enlarged cross-section of the members Overweight in case of RC jacketing Inner surface corrosion	RC jacketing Steel-plates jacketing	Improvement of masonry quality and continuity of masonry leaves via different measures, such as grout injection, repointing of walls, and reconstruction of wall portions	Floor/roof diaphgram and connection to wall via different measures: • Thin ordinary RC slab
Fiber reinforced polymers (FRP) wrapping		FRP-based solutions HPFRC-solutions	Structural coatings	 Second timber deck by means of planks, plywood, CLT panels Perimeter ties
High- performance fiber-reinforced concrete (HPFRC) jacketing		Pre-stressed high-strength steel wires		Horizontal steel tie-bars, located outside or inside wa thickness.



17 Life Cycle Thinking (LCT) criteria

Holistic/integrated renovation compatibility - Incremental renovation - Occupants' disruption - Replacement of finishes - Potential to recycle/re-use - Duration of on-site works - Maintenance - Initial economic investment - Life cycle cost - Repairability - Demountability - Adaptability for future use.

Two-phase cost analysis - 26 seismic retrofit projects of residential and non-residential buildings

		Seismic retrofit interventions					
Case study	Quality masonry improvement	Perimeter ties	Roof/floor diaphragm	In-plane resistance of walls	Foundation system retrofit	Static Ioads retrofit	Energy retrofit
CS 1	\checkmark	\checkmark	\checkmark			\checkmark	
CS 2	\checkmark	\checkmark	\checkmark			\checkmark	
CS 3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
CS 4	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	
CS 5	\checkmark	\checkmark	\checkmark			✓	
CS 6		\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
CS 7	\checkmark			\checkmark			
CS 8			\checkmark	\checkmark	\checkmark		
CS 9			\checkmark	\checkmark			
CS 10			\checkmark				
CS 11	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CS 12	\checkmark	\checkmark	\checkmark	\checkmark		✓	\checkmark
CS 13	\checkmark	\checkmark	\checkmark				

	— 13 RC buildings ———	_
Lecco province	Verona province	
CS 18 - SB Varese province	CS 26 - SS RESIDENTIAL BUILDING (RB)	
CS 17 - SB	Ferrara province	
CS 14 - GH CS 16 - H	CS 24 - IB CS 25 - AB Reggio Emilia province AGRICULTURAL	
CS 19 - SB CS 23 - RB	CS 15 - SH	
CS 19 - 58 CS 20 - 58 CS 21 - 58 CS 22 - 58		

	Seismic retrofit interventions					Energy
Case study	Joint strengthening	Exoskeleton (Shear wall)	Exoskeleton (Shell)	Roof/floor diaphragm	loads retrofit	retrofit
CS 14			\checkmark	\checkmark		\checkmark
CS 15		\checkmark		\checkmark		
CS 16	\checkmark	\checkmark				
CS 17		\checkmark				
CS 18		\checkmark				\checkmark
CS 19	\checkmark	\checkmark		✓		
CS 20	\checkmark			✓	✓	
CS 21		\checkmark		\checkmark		
CS 22		\checkmark		\checkmark		
CS 23		\checkmark		✓	L.	\checkmark
CS 24	\checkmark					\checkmark
CS 25	\checkmark					\checkmark
CS 26	\checkmark	\checkmark				

16

CS 26 - SS

CS 25 - AB

CS 15 - SH

Ferrara province

Reggio Emilia province

CS 24 - IB RESIDENTIAL

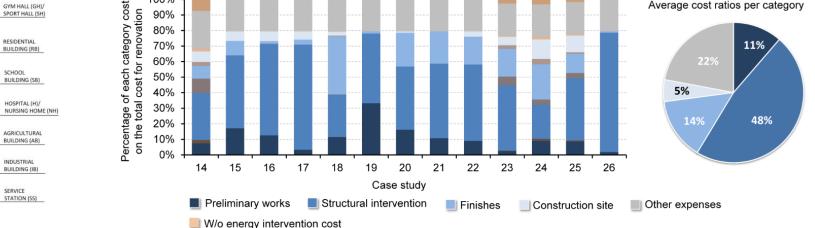
HOSPITAL (H)/

BUILDING (AB)

INDUSTRIAL

SERVICE

BUILDING (IB)


STATION (SS)

÷ SCHOOL

-

⊞n

First phase – Cost breakdown analysis of the 26 seismic retrofit projects Cost breakdown of retrofit activities **13 Masonry buildings** 100% cost Average cost ratios per category Bergamo province Percentage of each category co on the total cost for renovation 90% HISTORICAL AâA 80% PALACE (HP) 9% CS 6 - RB 70% 22% HISTORICAL 60% Brescia province CHURCH (HC) 50% ÎÂÎ Ferrara province 6% 40% RESIDENTIAL CS 7 - RB CS 3 - HP 41% 囹 BUILDING (RB) 30% ŵ CS 5 - RB CS 13 - AB Â 22% 20% SCHOOL CS 9 - SB CS 11 - H ∎**f**∎ Ravenna province BUILDING (SB) 10% CS 10 - SB CS 12 - NH Â 0% HOSPITAL (H)/ Mantova province 2 3 5 7 8 9 10 12 13 CS 8 - SB ΠΩΠ 4 6 11 1 NURSING HOME (NH) ÎÂ Case study A AGRICULTURAL Preliminary works Structural intervention CS1-HP CS 4 - HC Finishes BUILDING (AB) Construction site Other expenses CS 2 - HP W/o energy intervention cost Cost breakdown of retrofit activities **13 RC buildings** 100% Average cost ratios per category GYM HALL (GH)/ Lecco province Verona province SPORT HALL (SH) 90% â ⊞n

CS 18 - SB

÷

CS 17 - SB

CS 14 - GH

Â

CS 19 - SB

CS 20 - SB

CS 21 - SB

CS 22 - SB

Varese province

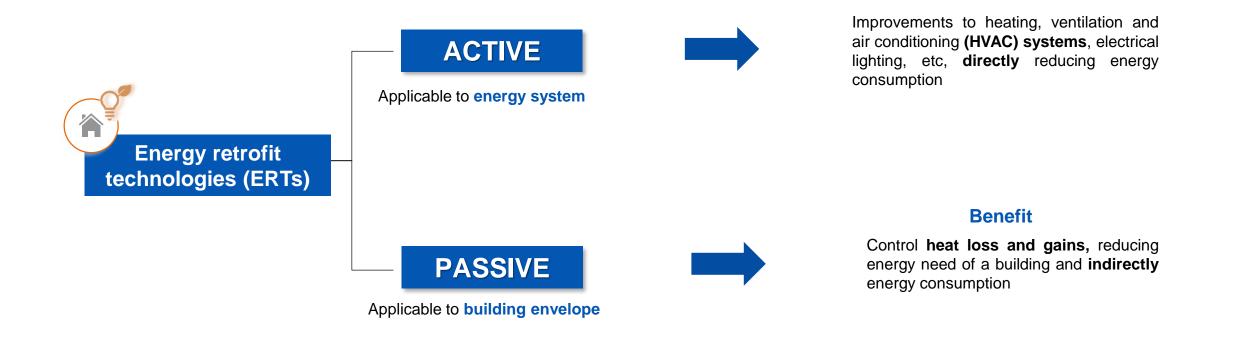
Brescia province

CS 16 - H

CS 23 - RB

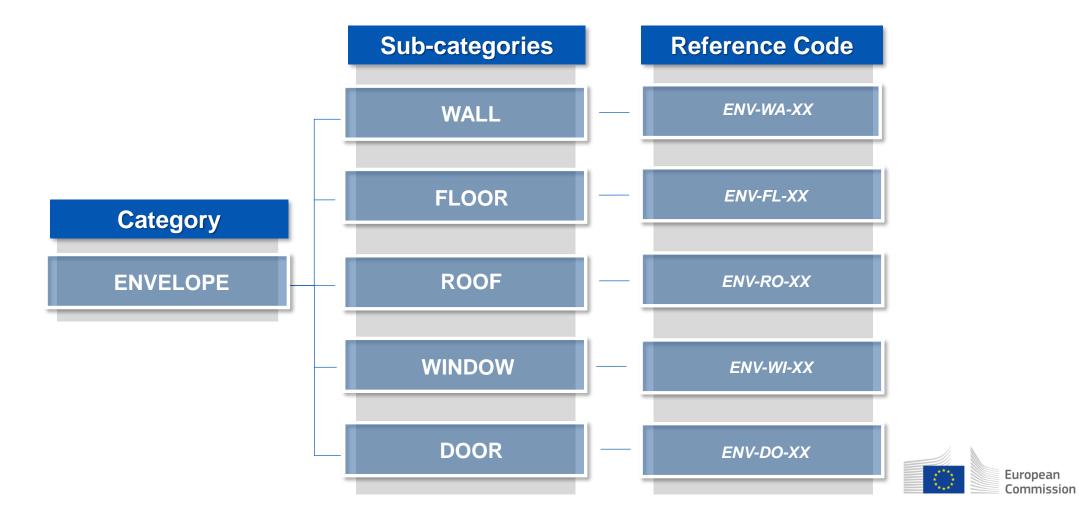
Second phase – Average unit-cost ranges of selected seismic retrofit technologies for masonry buildings

Building	Seismic retrofit technology	Average unit-cost range	SRT details	Disruption time	Energy retrofit
	Shear walls (outside the building)	530–910 €/m² of vertical area of wall 510–880 €/m² of vertical area of wall	Steel braced shear wall (+ foundations) RC shear wall (+ foundations)	✓ Low	✓ Full compatibility
	Strengthening of vaults (extrados solutions)	350–415 €/m² of vault plan 365–420€/m² of vault plan	UHTSS strips and mortar layer FRC matrix coatings	(x) High	✓ Full compatibility
	Continuity of masonry walls	200–235 €/m² of vertical area of wall	Partial replacement of external leaf	(x) High	Possible driver
	Strengthening of masonry walls with structural coatings or steel bracings	220–280 €/m ² of vertical area of wall 230–240 €/m ² of vertical area of wall 340–400 €/m ² of vertical area of wall	Steel bracing plates FRM system UHTSS strips	 (x) High (Internal wall or double faces of perimeter wall) ✓ Low (External face of perimeter wall) 	✓ Full compatibility
Masonry	Improvement of masonry quality	80–90 €/m² of vertical area of wall 225–315 €/m³	Repointing of masonry walls Injections of three leaf walls	(x) High	✓ Full compatibility
	Roof diaphragm	135–225 €/m² of roof area (Church) 195–300 €/m² of roof area (Residential bldg)	Plywood panels and perimeter steel chords	✓ Low	✓ Full compatibility
	Floor diaphragm	175-240 €/m ² of floor area (Residential bldg)	Plywood panels and perimeter steel chords	(x) High (Intrados) Medium (Extrados)	✓ Full compatibility
	Perimeter ties	50-70 €/m² in plan (Church) 90-110 €/m² in plan (Residential bldg)	Steel perimeter ties (at sight)	Medium	Not applicable
		125-135 €/m of strip length (Church)	Galvanized UHTSS perimeter strips		


Second phase – Average unit-cost ranges of selected seismic retrofit technologies for RC buildings

Building	Seismic retrofit technology	Average unit-cost range	SRT details	Disruption time	Energy retrofit
	Base isolation	2500-3000 €/m² of ground floor area	Cut of pillars	Medium	Possible driver
	Shear walls (outside the building)	530–910 €/m² of vertical area of wall 510–880 €/m² of vertical area of wall	Steel braced shear wall (+ foundations) RC shear wall (+ foundations)	✓ Low	✓ Full compatibility
	Floor diaphragm	155-230 €/m² of floor area (Residential bldg) 275–350 €/m² of floor area (Residential bldg)	RC slab (50-60 mm-thick) FRC slab (25 mm-thick)	(x) High (Intrados) Medium (Extrados)	✓ Full compatibility
RC	RC Local strengthening of RC elements: column	235 €/m ² of coating-covered vertical area 330–370 €/m ² of coating-covered vertical area 350–380 €/m ² of wrapped vertical area 340–360 €/m ² of vertical area	RC coating (40 mm-thick) FRC coating (20-40 mm-thick) FRP wrapping Steel jacketing (L-profiles at the corner and plates)	(x) High	Possible driver
	Local strengthening of RC elements: beam-to-column joint (outside)	270-300 €/m²	Quadraxial CFRP strips	✓ Low	Possible driver
	Exoskeleton (Shear wall)	250–580 €/m ² of vertical area of building 215–405 €/m ² of vertical area of building	Steel braced shear wall exoskeleton (+ foundations) RC shear wall exoskeleton (+ foundations)	✓ Low	✓ Full compatibility
	Exoskeleton (Shell)	145–345 €/m² of vertical area of building 165–345 €/m² of vertical area of building	Steel diagrid (+ foundations) X-lam panel box structure (+ foundations)	✓ Low	✓ Full compatibility

Energy retrofit technologies



Benefit

Energy retrofit technologies

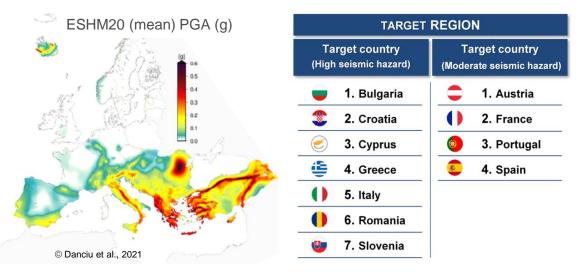
20 PASSIVE ENERGY RETROFIT TECHNOLOGIES (available in the construction market)

Energy retrofit technologies: walls

WALL	Code	Passive ERT	Main characteristics	Benefit
	ENV-WA-01	ETICS - External Thermal Insulation Composite System	Multi-layer system: fastening to the supporting wall, insulation panel, reinforcement layer, external plaster.	•
	ENV-WA-02	External insulation of party walls with polyurethane spray foam	Polyurethane foam sprayed on the wall; protected with a layer of paint or 1000 kg/m ³ polyurethane elastomer.	
	ENV-WA-03	Prefabricated systems for external insulation of facades	Prefabricated Units for External Wall Insulation, comprising external skin, insulating layer and fixings devices. No gap between insulation and skin.	Improve thermal insulation .
	ENV-WA-04	System of façade refurbishment with cement panels sheathing	Exterior facade cladding: metal support structure to which cement panel is screwed and the resulting chamber is insulated creating or not a ventilated facade	
	ENV-WA-05	System of interior insulation by cladding	Thermal insulation on the inside. Compared to ETICS: reduction of living area and unsolved thermal bridges.	
	ENV-WA-06	Injection of thermal insulation material in air chambers	Injection of thermal insulation material by pressure in cavities through previous perforations. Injection possible from both inside and outside	
	ENV-WA-07	Ventilated Façade	Outdoor cladding solution, allowing air circulation between the supporting wall and the cladding material.	Global warming reduction
23	ENV-WA-08	Green Façade	Vertical structures with plants or greenery attached to them, also presenting irrigation systems.	Urban effects island mitigation

Energy retrofit technologies: floors and roofs

FLOOP	Code	Passive EET	Main characteristics	Benefit
FLOOR	ENV-FL-01	Insulation systems on the inside , over slabs or floors, with existing pavement	Thermal insulation over an existing floor by using different material panels (XPS, mineral wall, etc.).	•
ROOF	ENV-RO-01	External insulation system for flat roofs	Multi-layer system for existing roof: thermal insulation panels (XPS, Mineral wool), properly fastened, a waterproofing layer, auto-protected from puncturing.	
	ENV-RO-02	External insulation system for sloping roof	Multi-layer system: Base support, vapour barrier, 1st row of wooden strips, insulation, waterproofing layer, 2nd row of wooden strips, 3rd row of strips perpendicular to the second-row ones below, coverage (tiles).	Improve thermal insulation
	ENV-RO-03	Internal insulation systems on non- habitable spaces	Mineral/Rock wool batts or rolls onto the floor pitch of the attic.	
-	ENV-RO-04	Internal insulation systems over dropped ceilings	Insulation (batts of mineral/rock wool) on the inside by enclosing it into the structure of a dropped ceiling.	
-	ENV-RO-05	Cool roof	Reflect more sunlight and absorb less heat than a standard roof (65,5°C). Made of highly reflective type of paint or tiles or shingle.	
	ENV-RO-06	Green roof	Roof covered by a layer of vegetation : waterproofing, soil, and plants. Two types: extensive and intensive .	Global warming reduction Urban effects island mitigation


Energy retrofit technologies: windows and doors

WINDOW	Code	Passive EET	Main characteristics	Main benefits
	ENV-WI-01	Window replacement	Responsible to up to 25-30% of heating and cooling energy use throughout the year. Replacing old, inefficient window assemblies with newer ones.	Reduce air inflitration
_	ENV-WI-02	Window film	Typically three layers : adhesive layer against the glass, polyester film layer, and scratch-resistant coating. Block against solar heat gain and protect against glare and UV.	Control solar gains
DOOR	ENV-DO-01	Door replacement	Materials such as insulated metal or fiberglass are recommended.	•
_	ENV-DO-02	Adding a vestibule	Vestibules help reduce the heating and cooling load related to exterior doors opening and closing.	Reduce air inflitration
-	ENV-DO-03	Weatherstripping	Weatherstripping can reduce the energy losses due to air leakage. Many different materials, such as foam rubber, EPDM rubber, felt, bent metal, and plastic can be used for this scope.	

Compatibility of ERTs with EU building stock

Geographical focus

Building stock analysis

Building use

Building age

Construction and thermal characteristics - considered to estimate building share to which the ERTs could be applied (construction compatibility) with different level of thermal performance compatibility (low, medium, high).

Fully construction compatibility with residential building stock

- Wall and floor insulation technologies
- Internal insulation of roofs .
- Cool roofs •
- Window and door replacement and weather-stripping ٠
- Window films

Example

External thermal insulation composite system (ETICS) – Wall

Thermal performance compatibility*	High	Medium	Low
Apartment buildings	12%	80%	8%
SFH	12%	80%	8%
MFH	10%	58%	32%

* Thermal performance compatibility = qualitative thermal performance improvement an ERT may provide to the examined building stock

Insulation of external wall air chambers resulted the **less compatible** technology (as it can be implemented only in cavity walls). European

Ranking of selected ERTs

- 11 energy retrofit technologies Ranking -

Attractiveness for potential investment to implement integrated seismic and energy retrofit of residential buildings in the target region

- Technologies analysed according to a set of indicators:
 - Unit cost of implementation Unit energy saved Unit cost-effectiveness Disruption time Life-span Generated waste
- Multi-criteria decision analysis (AHP method)

Unit cost of implementation Unit energy saved	Highly important
Life-span Generated waste	Modestly important

Rank		Envelope component	EET	Further details
High	1	Wall	Insulation of wall air chamber	Very low unitary cost Low waste generated
	2	Roof	Internal insulation	
	3	Wall	Internal insulation by cladding	
	4	Roof	External insulation of flat roofs	
Moderate	5	Door/window	Weather stripping	/
	6	Door/window	Replacement	
	7	Floor	Insulation systems	
Low	8	Wall	Cement panels sheathing systems for façade renovation	High unitary cost Low cost-effectiveness
	9	Roof	External insulation of pitched roofs	
	10	Wall	Prefabricated unit for external wall insulation	
	11	Wall	ETICS	

Concluding remarks

Conclusions

- EU masonry and RC buildings would benefit from combined seismic and energy retrofit, considering that 60-70% of buildings examined in selected EU countries were built with no or low seismic design and energy efficiency requirements.
- A catalogue of seismic renovation technologies was provided along with their classification in terms of cost with exoskeleton resulting a promising solution from a life cycle thinking perspective.
- Average unit-cost ranges (Italian market-dependent) were proposed as useful supporting tool in the preliminary phase of a renovation project to estimate budgets, enable project financing.
- A catalogue of energy renovation technologies at building component level was considered with external insulation for walls resulting as highly compatible with the EU building stock.
- Energy renovation technologies were ranked in terms of attractiveness for combined renovation with internal insulation of roofs and external walls resulting highly attractive due to low cost, low generated waste and high performance.

Publication

JRC Technical and Science for Policy reports

Overview of seismic and energy retrofit technologies for existing buildings

References

Baggio, C., Bernardini, A., Colozza, R. et al., Field manual for post-earthquake damage and safety assessment and short term countermeasures (AeDES), edited by A. V. Pinto and F. Taucer, EUR 22868 EN, Office for Official Publications of the European Communities, Luxembourg, 2007, ISSN 1018-5593.

Barreira, E. and de Freitas, V. P., 'Experimental study of the hygrothermal behaviour of external thermal insulation composite systems (ETICS)', Building and Environment, Vol. 63, 2013, pp. 31–39, doi:10.1016/j.buildenv.2013.02.001.

Belleri, A. and Marini, A., 'Does seismic risk affect the environmental impact of existing buildings?', Energy and Buildings, Vol. 110, No 1, 2016, pp. 149-158, doi:10.1016/j.enbuild.2015.10.048

Canbay, E., Ersoy, U. and Ozcebe, G., 'Contribution of RC Infills to the seismic behavior of structural system', ACI Structural Journal, Vol. 100, 2003, pp. 637-643, doi:10.14359/12805.

Costantinou, M.C., Soong, T.T. and Dargush, G.F., Passive energy dissipation system for structural design and retrofit, MCEER Monograph series No. 1, USA, 1998.

Danciu, L., Nandan. S., Reyes, C. et al., The 2020 update of the European Seismic Hazard Model: Model Overview, 2021, EFEHR Technical Report 001, v1.0.0, doi:10.12686/a15.

Di Lorenzo, G., Colacurcio, E., Di Filippo, A., Formisano, A., Massimila, A. and Landolfo, R., 'State-of-the-art on steel exoskeletons for seismic retrofit of existing RC buildings', Ingegneria Sismica, Vol. 36, 2020, pp. 33-50.

Dolce, M., Speranza, E., Giordano, F. et al., 'Observed damage database of past Italian earthquakes: the Da.D.O. WebGIS', Bollettino di Geofisica Teorica ed Applicata, Vol. 60, No 2, 2019, pp. 141-164, doi:10.4430/bgta0254.

Dolce, M. and Di Bucci, D., 'National Civil Protection Organization and technical activities in the 2012 Emilia earthquakes (Italy)', Bulletin of Earthquake Engineering, Vol. 12, 2014, pp. 2231–2253, doi:10.1007/s10518-014-9597-x.

European

Commission

European Statistical System (ESS), EU Population and Housing Census, 2011, [CensusHub, accessed on 19/12/2021].

Eurostat, Cooling and heating degree days by country - annual data, 2020, [nrg_chdd_a, accessed on 17/12/2021].

References

Italian Statistical Institute (Istat), Population Housing Census, 2011, [dati-censimentopopolazione.istat.it, accessed on 17/12/2021].

Margani, G., Evola, G., Tardo, C. and Marino, E. M., 'Energy, Seismic, and Architectural Renovation of RC Framed Buildings with Prefabricated Timber Panels', Sustainability, Vol. 12, 2020, pp. 4845, doi:10.3390/su12124845

Marini, A., Passoni, C., Belleri, A. et al.. 'Combining seismic retrofit with energy refurbishment for the sustainable renovation of RC buildings: a proof of concept', European Journal of Environmental and Civil Engineering, Vol. 26, 2017, pp. 2475-2495, doi:10.1080/19648189.2017.1363665

Passoni, C., Marini, A., Belleri, A. and Menna, C., 'Redefining the concept of sustainable renovation of buildings: State of the art and an LCT-based design framework', Sustainable Cities and Society, Vol. 64, 2021, pp. 1-24, doi:10.1016/j.scs.2020.102519.

Pereira, J., Teixeira, H., da Glória Gomes, M. and Moret Rodrigues, A., 'Performance of solar control films on building glazing: A literature review', Applied Sciences, Vol., 12, 2022, p. 5923, doi:10.3390/app12125923.

Romano, E., Negro, P., Marini, A. et al., Overview of seismic and energy retrofit technologies for existing buildings, Publications Office of the European Union, Luxembourg, 2023, doi:10.2760/50067, JRC132445.

Romano, E., Negro, P., Santarsiero, G. et al., Identification of European buildings most needing seismic and energy retrofit with a focus on the Italian context, edited by Romano, E. and Negro, P., Publications Office of the European Union, Luxembourg, 2023, doi:10.2760/28953, JRC130997.

Saaty, T. L., The analytic hierarchy process, McGrawHill, New York, 1980.

Typology Approach for Building Stock Energy Assessment' (TABULA) project (2009-2012), https://episcope.eu/iee-project/tabula/, and its dedicated web-based tool, named TABULA WebTool, https://webtool.building-typology.eu/.

Warn, G.P. and Ryan, K.L., 'A Review of Seismic Isolation for Buildings: Historical Development and Research Needs', Buildings, Vol. 2, 2012, pp. 300-325, doi:10.3390/buildings2030300.

Zanni, J., Cademartori, S., Marini, A., Belleri, A. et al., 'Integrated Deep Renovation of Existing Buildings with Prefabricated Shell 32 Exoskeleton', Sustainability, Vol. 13, No 20, 2021, article No. 11287, doi:10.3390/su132011287.

Thank you

© European Union 2024

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide 2, 4, 7, 15, 18, 19, 20, 21: bulb, leaf icons @Microsoft Office PowerPoint Stock Icons; Slide 6 and 26: ESHM20 (seismic hazard map) © Danciu et al., 2021; Slide 16 and 17: building icons @Microsoft Office PowerPoint Stock Icons

